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Abstract

Geometrically nonlinear vibrations of shallow circular cylindrical panels with complex shape of the boundary are

considered. The R-functions theory and variational methods are used to study the problem. The R-functions method

(RFM) allows constructing in analytical form the sequence of basis functions satisfying the given boundary conditions in

case of complex shape of the boundary. The problem is reduced to a single second-order differential equation with

quadratic and cubic nonlinear terms. The method developed has been initially applied to study free vibrations of shallow

circular cylindrical panels with rectangular base for different boundary conditions: (i) clamped edges, (ii) in-plane

immovable simply supported edges, (iii) classically simply supported edges, and (iv) in-plane free simply supported edges.

Then, the same approach is applied to a shell with complex shape of the boundary. Experiments have been conducted on

an aluminum panel with complex shape of the boundary in order to identify the nonlinear response of the fundamental

mode; these experimental results have been compared to numerical results.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Refs. [1–3] are the most complete reviews of studies on nonlinear vibrations of shallow shells. In pioneering
studies [4–9], tangential and rotary inertia were neglected in the dynamics of shallow shells in order to simplify
the mathematical formulation. As a rule, the single-mode expansion of the displacements was used to find an
approximate solution of the nonlinear partial differential equations of motion. By using variational methods,
the initial problem was reduced to a second order, ordinary nonlinear differential equation in the single
parameter given by the vibration amplitude. Different methods were applied to integrate the differential
equation: the Lindstedt method [6,7], the method of continuation [10], numerical integration [4,7,11,12] and
the harmonic balance method [13]. The effect of aspect ratios on nonlinear free vibrations of simply supported
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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circular cylindrical panels with rectangular base was investigated in Ref. [14]; nonlinear vibrations of simply
supported circular cylindrical panels subjected to axial excitations were studied in Ref. [15].

In the following years, studies on nonlinear dynamics of shallow shells introduced important refinements:
increased number of modes (i.e. degrees of freedom (dof)) in the approximating functions [16–22], use of
improved shell theories [1,13,21,23,24] and introduction of physical nonlinearity [25–27].

In order to solve the system of nonlinear partial differential equations, it is necessary to discretize the
system, e.g. by using admissible functions. The construction of the basis functions, satisfying the boundary
conditions, is a very difficult task in case of complex domains. In fact, a very small number of studies address
the nonlinear dynamics of structural elements of complicated geometry. The R-functions theory, developed by
the Ukrainian mathematician V.L. Rvachev, is one of the possible approaches to solve the problem [28–33]. It
allows building the basis functions in analytical form for an arbitrary domain and different boundary
conditions, including mixed boundary conditions.

In the present study, geometrically nonlinear vibrations of shallow circular cylindrical panels with complex
shape of the boundary are considered. The present approach is based on the R-functions theory and
variational methods. Numerical calculations of nonlinear free vibrations of circular cylindrical panels with
rectangular base have been performed for several types of homogeneous boundary conditions: (i) clamped
edges, (ii) in-plane immovable simply supported edges, (iii) classically simply supported edges and (iv) in-plane
free simply supported edges. A comparison is carried out with the results previously reported by Amabili
[21,34] for the response of circular cylindrical panels to harmonic excitation in the frequency neighborhood of
the fundamental mode. Nonlinear free vibrations of simply supported circular cylindrical panels with complex
shape of the boundary have been investigated by using the R-functions method (RFM). Experiments have
been conducted on an aluminum shell with complex shape of the boundary in order to identify the nonlinear
response of the fundamental mode; these experimental results have been compared to numerical results.

2. Problem formulation

A shallow shell of uniform thickness h and arbitrary shape is considered; it is assumed that the deflection of
its middle surface is of the same order of the shell thickness. The principal lines of curvature of the middle
surface coincide with the coordinates x, y of the Cartesian coordinate system, and z is direct along the normal
to the middle surface of the shell and is oriented inwards, as shown in Fig. 1. Strain–displacement relationships
based on the Donnell–Mushtary–Vlasov nonlinear shell theory [4] are used in the present study. The middle
surface strains ex, ey, exy and the changes in curvature and torsion wx, wy, wxy of a doubly-curved shallow shell
are given by

�x ¼
qu

qx
�

w

Rx

þ
1

2

qw

qx

� �2

; �y ¼
qv

qy
�

w

Ry

þ
1

2

qw

qy

� �2

; gxy ¼
qu

qy
þ

qv

qx
þ

qw

qx

qw

qy
, (1)
Fig. 1. Geometry of the shallow shell and coordinate system.
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wx ¼ �
q2w
qx2

; wy ¼ �
q2w

qy2
; wxy ¼ �2

q2w
qxqy

, (2)

where u, v, w are the displacements of an arbitrary point on the middle surface in x, y, z directions,
respectively, and Rx, Ry are the constant middle surface principal radii of curvature in x, y directions,
respectively.

The following equations of motion, according to the Donnell–Mushtary–Vlasov nonlinear shell theory, are
used [4]:

q2ū

qx2
þ

1� m
2

q2ū

qZ2
þ

1þ m
2

q2v̄

qxqZ
¼ l1 w̄ð Þ þNl1 w̄ð Þ þ l2

h2

a2

q2ū
qt2

, (3)

1þ m
2

q2ū
qxqZ

þ
1� m
2

q2v̄

qx2
þ

q2v̄

qZ2
¼ l2 w̄ð Þ þNl2 w̄ð Þ þ l2

h2

a2

q2v̄
qt2

, (4)
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2
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q2w̄
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, ð5Þ

where r4 ¼ ðq4=qx4Þ þ 2ðq4=qx2qZ2Þ þ ðq4=qZ4Þ is the biharmonic operator, and the linear and nonlinear
operators l1ðw̄Þ; l2ðw̄Þ; Nl1ðw̄Þ; and Nl2ðw̄Þ are given by

l1 w̄ð Þ ¼ Kx þ mKZ
� � qw̄

qx
; l2 w̄ð Þ ¼ mKx þ KZ

� � qw̄

qZ
, (6a,b)

Nl1 w̄ð Þ ¼ �
qw̄

qx
q2w̄

qx2
þ

1� m
2

q2w̄

qZ2

� �
�

1þ m
2

qw̄

qZ
q2w̄

qxqZ
, (7)

Nl2 wð Þ ¼ �
qw̄

qZ
q2w̄

qZ2
þ

1� m
2

q2w̄

qx2

� �
�

1þ m
2

qw̄

qx
q2w̄

qxqZ
. (8)

Equations of motion (3–5) include in-plane inertia but neglect rotary inertia and shear deformation; this is a
good approximation for uniform thin shells. In expressions (3–5) the following non-dimensional variables
have been introduced:

x ¼
x

a
; Z ¼

y

a
; ū ¼

ua

h2
; v̄ ¼

va

h2
; w̄ ¼

w

h
; t̄ ¼ o0t; KZ ¼

a2

Ryh
; Kx ¼

a2

Rxh
, (9)

where a is the characteristic size of the base of the panel, E is Young’s modulus, m is the Poisson ratio, r is the
mass density, t is time and o0 is the natural circular frequency of the mode considered, which is related to the
non-dimensional frequency parameter l as follows:

o0 ¼
l
a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2

r 1� m2ð Þ

s
. (10)

The non-dimensional forces per unit length Nx, NZ, T are given by a linear and a nonlinear part (hereafter
the overline on the non-dimensional displacements is omitted for simplicity):

Nxðu; v;wÞ ¼ NL
x ðu; v;wÞ þND

x ðwÞ; NZðu; v;wÞ ¼ NL
Z ðu; v;wÞ þND

Z ðwÞ, (11a,b)

Tðu; v;wÞ ¼ TLðu; vÞ þ TDðwÞ, (11c)
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where

NL
x ðu; v;wÞ ¼

qu

qx
þ m

qv

qZ
� Kx þ mKZ
� �
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qu
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� �

w, (12a,b)

TLðu; vÞ ¼
qu
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þ

qv

qx
, (12c)
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In the limit case of a flat plate, for which Kx ¼ KZ ¼ 0, Nx, NZ are denoted as Nx
PL, NZ

PL, and take the
simplified expressions:
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. ð14a;bÞ

Four boundary conditions are given at each edge of the panel. The boundary conditions considered in this
study are:
–
 Clamped panel:

un ¼ 0; vn ¼ 0; w ¼
qw

qn
¼ 0, (15)

where un ¼ ul þ vm; vn ¼ �umþ vl, and l, m are the direction cosines of the edge with respect to the in-
plane coordinates u, v (in case of curved edge, l and m are functions of the position); n, t are the normal and
the tangent to the boundary, respectively; both of them are contained in the plane tangent to the panel at
the boundary, with the normal directed outward the shell domain.
–
 In-plane immovable simply supported panel:

un ¼ 0 vn ¼ 0; w ¼ 0; Mn ¼ �D
q2w

qn2
þ m

q2w

qt2

� �
¼ 0, (16)

where Mn is the bending moment.

–
 Classical simply supported panel:

vn ¼ 0; w ¼ 0; Nn ¼ 0; Mn ¼ 0. (17)
–
 In-plane free simply supported panel:

Nn ¼ 0; Nnt ¼ 0; w ¼ 0; Mn ¼ 0, (18)

where Nn ¼ Nxl2 þNZm
2 þ 2Tlm, Nnt ¼ Tðl2 �m2Þ þ ðNZ �NxÞ lm.
–
 In-plane free simply supported panel with elastic distributed springs tangent to the edges:

Nn ¼ 0; Nnt ¼ �ksprvn; w ¼ 0; Mn ¼ 0. (19)

where kspr is the spring stiffness per unit length.

3. Solution method

Let us assume that the vectorial eigenfunction ~U ¼ ðU1;V 1;W 1Þ associated with the fundamental natural
frequency of free vibrations is known; the procedure to determinate U

!
is presented in Section 5 and is carried



ARTICLE IN PRESS
L. Kurpa et al. / Journal of Sound and Vibration 306 (2007) 580–600584
out by using the RFM. The deflection wðx; Z; t̄Þ is assumed to be expressed by

w x; Z; t̄ð Þ ¼ y1 t̄ð ÞW 1 x; Zð Þ, (20)

where W1(x, Z) is a component of the vectorial eigenfunction; this is a single-mode expansion. Eq. (20) is an
approximation, which is a limitation of the present study; numerical results show that this approximation can
give accurate results for thin shallow panels with weak nonlinearity, in absence of internal resonances.

The in-plane displacements u and v are expanded by taking into account that the functions
uðx; Z; t̄Þ and vðx; Z; t̄Þ must satisfy identically Eqs. (3) and (4), and the boundary conditions. By substituting
Eq. (20) into Eqs. (3) and (4) where in-plane inertia is neglected (i.e. the last term on the right-hand side is
deleted in Eqs. (3) and (4)), one obtains a system of equations having the following solution:

u x; Z; t̄ð Þ ¼ y1 t̄ð ÞU1 x; Zð Þ þ y2
1 t̄ð ÞU2 x; Zð Þ, (21)

v x; Z; t̄ð Þ ¼ y1 t̄ð ÞV 1 x; Zð Þ þ y2
1 t̄ð ÞV 2 x; Zð Þ, (22)

In Eqs. (21) and (22), U1 and V1 are the first two components of the vectorial eigenfunction ~U previously
defined, and U2 and V2 are the solution of the system of equations (3) and (4) with, on the right-hand side,
only the nonlinear terms given by Eqs. (7), and (8) (i.e. canceling the linear terms and in-plane inertia); U2 and
V2 satisfy the appropriate boundary conditions. The method developed to obtain U2 and V2 is described in
Section 6.

By substituting U1, V1, U2, V2, W1 into Eq. (5) and applying the Galerkin method, a second-order nonlinear
differential equation in the time function y1(t) is obtained in the form:

y001 t̄ð Þ þ y1 t̄ð Þ � ay2
1 t̄ð Þ þ by3

1 t̄ð Þ ¼ 0. (23)

The quadratic and cubic coefficients a and b are given by

a ¼ �

R
O KxNPL

x U2;V 2;W 1ð Þ þ KZNPL
Z U2;V 2;W 1ð Þ �NL

x U1;V1;W 1ð ÞW 1;xx
n

l2 W 1k k2

�NL
Z U1;V 1;W 1ð ÞW 1;ZZ � 1� mð ÞTL U1;V 1ð ÞW 1;xZ

o
W 1 dO

l2 W 1k k2
, ð24Þ

b ¼ �

R
O W 1;xxNPL

x U2;V 2;W 1ð Þ þ 1� mð ÞW 1;xZT U2;V2;W 1ð Þ þW 1;ZZNPL
Z U2;V2;W 1ð Þ

o
W 1 dO

n
l2 W 1k k2

, (25)

where the subscript ‘‘,’’ indicates a partial derivative, Nx
L, NZ

L, TL are defined by Eqs. (12a–c), and N, Nx
PL,

NZ
PL are defined by Eqs. (14a,b). In case of a flat plate, Eq. (23) becomes simpler, due to Kx ¼ KZ ¼ 0, and

a ¼ 0. Equation (23) can be integrated by using numerical methods.

4. The RFM

The RFM [28,29,35,36] allows searching for a solution of boundary value problems in a form that satisfies
exactly all the boundary conditions and contains functions to be determined in order to satisfy the differential
equations governing the problem in approximate way. Kantorovitch [37] introduced a solution u to
homogeneous Dirichlet conditions:

ujqO ¼ 0, (26)

where qO is the boundary of the domain; this solution has the form:

u ¼ oP, (27a)

where the function o vanishes at the boundary (ojqO ¼ 0) and is positive in the interior of O, and P is an
unknown function which allows to satisfy the differential equations governing the problem. Since o is
identically zero at the boundary qO, then no matter what the indefinite component P (differentiable up to the
required order) is, the function u given by Eq. (27a) will satisfy the boundary condition (26) exactly.
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The function P is determined in order to satisfy the differential equations; therefore, in general, it can be
expressed in approximate way by using a series expansion of basis functions ci:

P ¼
XN

i¼1

Cici, (27b)

where Ci are scalar coefficients. Thus, the solution takes the form:

u ¼ o
XN

i¼1

Cici. (28)

The undetermined coefficients Ci can be found numerically, e.g. by using variational or Galerkin methods.
This idea of Kantorovitch did not have particular success because: (i) there was no available technique to

construct such real functions o for complex domains and (ii) the same solution was not applicable to other
types of boundary value problems.

Rvachev [28,38] found the way to overcome both of the obstacles by creating the R-functions theory.
R-functions are elementary functions f whose sign is completely defined by the sign of their arguments; i.e. for
any R-function f exists a Boolean function F ðX 1;X 2; . . . ;X nÞ of Boolean variables Xn which satisfies the
following equality F ðS2ðx1Þ;S2ðx2Þ; . . .S2ðxnÞÞ ¼ S2ðf ðx1;x2; . . . ;xnÞÞ. The two-valued predicate S2(x) is
defined by

S2 xð Þ ¼
0; 8 xo0;

1; 8 xX0:

(
(29)

Functions that satisfy this properties are e.g. xyz, xþ yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xyþ x2 þ y2

p
and xyþ zþ z� xy

		 		. R-functions
behave as continuous analogs of logical Boolean functions. Every Boolean function has infinity analog
R-functions. The most known system of R-functions is given by the R-conjunction (x^ay) and the
R-disjunction (x_ay), which are defined as

x^ay ¼
1

1þ a
xþ y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 � 2axy

p� �
, (30)

x_ay ¼
1

1þ a
xþ yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 � 2axy

p� �
, (31)

where a is a continuous function satisfying the condition �1oa x; yð Þp1; the denial function, simply given by
minus ‘‘�’’, must be added to complete this system of R-functions. The R-conjunction (30) is an R-function
whose companion Boolean function is logical ‘‘and’’(4), whereas Eq. (31) has companion Boolean function
logical ‘‘or’’ (3). Note that the precise value of a is not important in many applications, and often it is set to a
constant. If a ¼ 1 is taken, Eqs. (30) and (31) become the functions Min(x, y) and Max(x, y), respectively.
Setting a ¼ 0 in Eqs. (30) and (31), the following simpler functions are obtained:

x^0y ¼ xþ y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, (32)

x_0y ¼ xþ yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. (33)

R-functions are closed under composition; therefore the function o can be obtained for complex domains
(eventually time-varying), which can be represented by using primitive geometric regions, e.g. defined by
systems of inequalities. Using R-operations, such as R-disjunctions (x_ay), which has analog Boolean union
[, and R-conjunction (x^ay), with analog Boolean intersection \, it is possible to construct the analytical
expression of o for any domain O.

The first step in order to build o for the domain O ¼ O(Q), where Q is a point in the plane (x, y) or in a
three-dimensional space, it is necessary to construct the so-called characteristic function (also named
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two-valued predicate) of the domain O, which is defined as

O ¼ O Qð Þ ¼
0; 8 QeO;

1; 8 Q 2 O:

(
(34)

Usually the domain and its characteristic function are denoted with the same symbol.
In general, the characteristic function of the domain O is obtained by applying simple operations 3, 4, �,

that correspond to the Boolean operations union [, intersection \ and absolute complement �, to sub-
domains Oi. A characteristic function Oi can be defined for each sub-domain Oi:

Oi Qð Þ ¼
0; 8 QeOi;

1; 8 Q 2 Oi:

(
(35)

Since Oi 2 B2f0; 1g, i.e. to the space of Boolean functions, then Oi may be used as an arguments of the Boolean
function F:

O ¼ F O1;O2; . . . ;Onð Þ, (36)

which is the characteristic function of the domain O. It is obvious that the domain O is determined not only by
the shape of sub-domains Oi, but also by the type of Boolean functions involved in F (union, intersection and
absolute complement).

As next step in the determination of o, the function Zi is introduced as the continuous analog of the
characteristic function Oi and is defined as

Zi Qð Þ40 8 Q 2 Oi,

Zi Qð Þo0 8 QeOi,

Zi Qð Þ ¼ 0 8 Q 2 qOi. ð37Þ

Let us assume that the domain O is defined by the characteristic function (two-valued predicate) represented in
Eq. (36), where F O1; . . . ;Onð Þ is a known Boolean function. Then the inequality f Z1; . . . ; Zn

� �
X0 describes the

domain O, where o ¼ f Z1; . . . ; Zn

� �
is an R-function that corresponds to the Boolean function F O1; . . . ;Onð Þ.

To construct the function o(x, y) it is sufficient to perform a formal substitution of the characteristic function
Oi with the continuous function Zi and the Boolean operations Oi \ Oj ; Oi [ Oj ; Ōi; (intersection, union and
absolute complement) with the corresponding symbols of R-operations, Zi^aZj ; Zi_aZj ; �Zi. Following this
substitution, the continuous function o of the domain O is given by

o ¼ f Z1; Z2; . . . ; Zn

� �
. (38)
Fig. 2. Panel with complex shape of the boundary and coordinate system.
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In order to better understand the method, the function o is built for the panel studied in Section 7.2 and
shown in Fig. 2. The domain O representing the panel surface is given by following Boolean operations on
sub-domains Oi:

O ¼ O1 ^ O2 ^ O3 _ O4ð Þ, (39)

by using (39), the equation of the domain for the panel in Fig. 2 may be written as

o x; yð Þ ¼ Z1^0Z2^0 Z3_0Z4
� �

, (40a)

where the functions Zi, i ¼ 1; . . . ; 4, are given by

Z1 ¼
b

2

� �2

� x2

 !
=bX0 in O1; Z2 ¼

a

2

� �2
� y2

� �
=aX0 in O2, (40b)

which are associated to horizontal (O1) and vertical (O2) strips in the plane comprised between the straight
lines x ¼7b/2 and y ¼7a/2, respectively,

Z3 ¼
a1

2

� �2
� y2

� �
=a1X0 in O3; Z4 ¼ x2 �

b1

2

� �2
 !

=b1X0 in O4, (40c)

in particular, O3 is a vertical strip between y ¼7a1/2 and O4 is the region of the plane exterior to the
horizontal strip delimited by x ¼7b1/2.

Eq. (40a) is normalized up to the first order, i.e. satisfies the following conditions:

o x; yð Þ ¼ 0; 8 x; yð Þ 2 qO, (41a)

qo
qn
¼ �1; 8 x; yð Þ 2 qO. (41b)

Inside the domain O, the inequality o x; yð Þ40 is verified.
It is possible to extend the solution procedure of Eq. (27) to the case of inhomogeneous Dirichlet conditions

given by

ujqO ¼ j0, (42)

where j0 is a function defined at the boundary qO and j is its extension defined in all the domain O. The
solution structure can be written in the following form:

u ¼ oPþ j. (43)

The general case of inhomogeneous Dirichlet conditions, in which the function j0 in Eq. (42) is specified as
a piecewise function at the boundary qO, can be solved by using the generalized Lagrange formula obtained by
Rvachev. The function j0 on the section qOi of the boundary qO of the domain O is indicated as

j0 x; yð Þ
		
qOi
¼ ji. (44)

Then solution may be represented by using the generalized Lagrange formula [28]:

u ¼ okPþ

Pn
i¼1jio

�ki

iPn
i¼1o

�ki

i

; with kiX1 and k ¼ max kið Þ. (45)

Solution (45) is given by a set of functions taking the given values ji on the respective sections of the boundary
qO; a possible choice is k ¼ ki ¼ 1, which makes the solution defined everywhere except at corner points. If
ki41, the partial derivatives of the function u coincide on the section qOi with the corresponding partial
derivatives of the functions ji up to the ki�1 order. Eq. (45) may be considered as the general solution
structure for inhomogeneous Dirichlet problems.
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Differential operators have been introduced by Rvachev to take into account boundary conditions of
differential type. For example, for two-dimensional problems, these operators have the following form:

Dk ¼
Xk

i¼0

Ci
k

qo
qx

� �k�i qo
qy

� �i qk

qxk�iqyi
, (46a)

Tk ¼
Xk

i¼0

�1ð Þk�iCi
k

qo
qx

� �i qo
qy

� �k�i qk

qxk�iqyi
, (46b)

where Ci
k ¼ kðk � 1Þ . . . ðk � i þ 1Þ=i!, and kX1; o(x, y) ¼ 0 is, as usual, the normalized equation of qO (or of

a section qOi). Any function uðx; yÞ 2 CnðOÞ satisfy the following expressions:

Dk uð Þ ¼
qku

qnk
; Tk uð Þ ¼

qku

qtk
; 8 x; yð Þ 2 qO; (46c,d)

Tk�mDmð Þ uð Þ ¼ DmTk�mð Þ uð Þ ¼
qku

qnmqtk�m
; 8 x; yð Þ 2 qO; (46e)

where n and t are here the outward normal and tangent to the boundary, respectively.
In case of Neumann boundary conditions in the form:

qu

qn

				
qO
¼ j0, (47)

the solution structure can be written in the following form:

u ¼ Pþ oj� oD1 Pð Þ þ o2P, (48a)

where P and j have been previously built for Dirichlet conditions and D1 is given by Eq. (46a) for k ¼ 1;
Eq. (48a) is based on the generalized Taylor series [36]. Similar procedures can be used for virtually any
boundary condition, included mixed boundary conditions. In particular, for boundary condition of the type
ujqO¼ qu=qn

		
qO ¼ 0, which are those of clamped edges, the solution structure can be written in the following

form:

u ¼ o2P. (48b)

The structure of admissible functions corresponding to clamped edges, Eq. (15), and in-plane immovable
simply supported edges, Eq. (16), is

U1 ¼ oP1; V 1 ¼ oP2; W 1 ¼ okP3, (49)

where o ¼ 0 is the normalized equation of the domain boundary; the parameter k in Eq. (49) depends on the
type of boundary condition: k ¼ 1 for simply supported edges and k ¼ 2 for clamped edges. The following
structure of the solution satisfies the classical simply supported edges, Eq. (17),

U1 ¼
qo
qx

P2 þ oP3; V1 ¼
qo
qy

P2 þ oP4; W 1 ¼ oP1. (50)

If the edges of the panel base are parallel to the coordinates axes, Eq. (50) can be rewritten into a simpler form.
As qo=qx ¼ 0 on the sides parallel to the axis x, and qo=qy ¼ 0 on the sides parallel to y, Eq. (50) take the
simplified form:

U1 ¼ o1P3; V1 ¼ o2P4; W 1 ¼ oP1, (51)

where oi ¼ 0 ði ¼ 1; 2Þ are the equations of the domain edges on which the boundary conditions U1 ¼ 0 or
V1 ¼ 0, respectively, should be satisfied.

If the panel has in-plane free simply supported edges, Eq. (18), the structure of the solution satisfying the
kinematic boundary conditions is

U1 ¼ P1; V1 ¼ P2; W 1 ¼ oP3. (52)
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In the case of boundary conditions represented by Eq. (19), the structure of the solution satisfying all the
boundary conditions is

U1 ¼ P1 1�m2Cspro
� �

� o D1P1 � lm 1þ mð ÞT1P1 þ ml2 �m2
� �

T1P2 � lmCsprP2


 �
, (53a)

V 1 ¼ P2 1� l2Cspro
� �

� o D1P2 þ lm 1þ mð ÞT1P2 þ l2 � mm2
� �

T1P1 � lmCsprP1


 �
, (53b)

W 1 ¼ P3 oþ
1

3
~o

� �
þ o h1

qP3

qx
þ h2

qP3

qy

� �
, (53c)

where D1 and T1 are obtained by Eq. (46), Cspr ¼ 2ð1þ mÞkspr=E, o ¼ oðx; yÞ as usual, ~o ¼ oðxþ h1; yþ h2Þ

and:

h1 ¼ �o xþ
1

2
o x; yð Þ; y

� 
þ o x�

1

2
o x; yð Þ; y

� 
,

h2 ¼ �o x; yþ
1

2
o x; yð Þ

� 
þ o x; y�

1

2
o x; yð Þ

� 
.

In Eqs. (49–53) the functions Pi, i ¼ 1; . . . ; 4, are the unknown functions that are represented as

P1 x; yð Þ ¼
XM1

i¼1

aiji x; yð Þ; P2 x; yð Þ ¼
XM2

i¼M1þ1

aiwi x; yð Þ,

P3 x; yð Þ ¼
XM3

i¼M2þ1

aici x; yð Þ; P4 x; yð Þ ¼
XM4

i¼M3þ1

aiyi x; yð Þ. ð54a2dÞ

In Eqs. (54) ai, i ¼ 1; . . . ; M4, are the coefficients defined in Eq. (27b) as Ci, to be determined by solving the
corresponding variational problem, and jiðx; yÞ; wiðx; yÞ; ciðx; yÞ; yiðx; yÞ are elements of a complete
function system fjiðx; yÞg; fwiðx; yÞg; fciðx; yÞg; fyiðx; yÞg. For example, the power polynomials, the
Chebyshev polynomials, the Legendre polynomials, trigonometric polynomials and functions, or finite
functions (splines, atomic functions) can be used in Eqs. (54).
5. Eigenvalue problem for linear vibrations of shallow shells with an arbitrary shape of the boundary by using the

R-functions method

Only linear terms are considered here in the shell middle surface strain–displacement relationships (1):

�x ¼
qu

qx
�

w

Rx

; �y ¼
qv

qy
�

w

Ry

; gxy ¼
qu

qy
þ

qv

qx
. (55)

The solution of Eqs. (3)–(5), after elimination of nonlinear terms, with any of the boundary conditions given
by Eqs. (15)–(19) may be reduced to a variational problem by considering the minimum of the Lagrangian,
which represents the difference of kinetic and elastic strain energies of the shell, once the displacements are
expanded by using admissible functions.

Vibrations are assumed to be harmonic in time, which yields:

u1 x; Z; t̄ð Þ ¼ U1 x; Zð Þ cos t̄; v1 x; Z; t̄ð Þ ¼ V 1 x; Zð Þ cos t̄; W 1 x; Z; t̄ð Þ ¼W 1 x; Zð Þ cos t̄. (56)
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The non-dimensional functional of energy can be written as

I ¼
1

2

Z
O

qU1

qx
� KxW 1

� �2

þ 2m
qU1

qx
� KxW 1

� �
qV 1

qZ
� KZW 1

� �
þ

qV1

qZ
� KZW 1

� �2
"(

þ
1� m
2

qV 1

qx
þ

qU1

qZ

� �#
þ

1

12

q2W 1

qx2

� �2

þ 2m
q2W 1

qx2
q2W 1

qZ2
þ

q2W 1

qZ2

� �2

þ 1� mð Þ
q2W 1

qxqZ

� �2
" #

�
l2

2

h2

a2
U2

1 þ
h2

a2
V 2

1 þW 2
1

� �)
dO, ð57Þ

where O is the panel surface projection on xZ plane.
The systems of admissible functions must be constructed in order to minimize the functional (57). The

R-functions theory is applied in order to find admissible functions for the displacements U1, V1, W1 which
satisfy the given boundary conditions [28–31].

In the present study, power polynomials have been used in Eqs. (54) to obtain numerical results. For the
panel in Fig. 2, assuming simply supported edges (50, 51), due to the symmetry of the problem in x and y, the
following polynomials have been used:

ji

� �
: 1;x2; y2;x4;x2y2; y4; . . . , (58a)

wi

� �
: x; y;xy; x3y; xy3; . . . , (58b)

ci

� �
: y;x2y; y3;x4y;x2y3; y5; . . . , (58c)

yif g; x;x3;xy2;x5;x3y2;xy4; . . . . (58d)

By substituting Eqs. (54) into any of the Eqs. (49)–(53) yields:

U1 ffi
XN1

i¼1

aiU1i; V1 ffi
XN2

i¼1þN1

aiV 1i; W 1 ffi
XN3

i¼1þN2

aiW 1i, (59a2c)

where U1i, V1i, W1i are admissible functions that satisfies the geometrical (kinematical) boundary conditions.
The calculation of the unknown coefficients ai is carried out by minimizing the Lagrange functional (57):

qI

qai

¼ 0; i ¼ 1; . . . ;N3, (60)

which yields the eigenvalue problem:

K� l2M
� �

X ¼ 0, (61)

where l are the eigenvalues, X ¼ ða1; a2; . . . ; aN3
Þ
T are the corresponding eigenvectors, i.e. the vectors of the

unknown coefficients, K ¼ fkijgi;j¼1;...;N3
is the stiffness matrix and M ¼ fmijgi;j¼1;...;N3

is the mass matrix.

6. Calculation of U2 and V2 in the in-plane expansions

As discussed in Section 2, the functions U2(x, Z) and V2(x, Z) are obtained by solving the following
differential equations obtained from Eqs. (3) and (4) canceling the linear terms and inertia on the right-hand
side:

q2U2

qx2
þ

1� m
2

q2U2

qZ2
þ

1þ m
2

q2V2

qxqZ
¼ Nl1 W 1ð Þ, (62a)

1þ m
2

q2U2

qxqZ
þ

1� m
2

q2V2

qx2
þ

q2V 2

qZ2
¼ Nl2 W 1ð Þ. (62b)
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It is possible to reduce Eq. (62) with any of the boundary conditions (15)–(19) to a variational problem
considering the minimum of energy integral [39] and developing U2 and V2 in a series of functions that satisfy
the geometrical boundary conditions; this gives

I ¼

Z
O

qU2

qx

� �2

þ
qV 2

qZ

� �2

þ 2m
qU2

qx
qV2

qZ
þ

1� m
2

qU2

qZ
þ

qV 2

qx

� �2

� 2
qW 1

qx
q2W 1

qx2

�(

þ
1þ m
2

qW 1

qZ
q2W 1

qxqZ
þ

1� m
2

qW 1

qx
q2W 1

qZ2


U2�2

qW 1

qZ
q2W 1

qZ2
þ

1þ m
2

qW 1

qx
q2W 1

qxqZ
þ

1� m
2

qW 1

qZ
q2W 1

qx2

� 
V2

)
dO

�

Z
qO

U2n

qW

qn

� �2

þ m
qW

qt

� �2
 !

þ 1� mð ÞV 2n

qW

qn

qW

qt

 !
dS, ð63Þ

where U2n ¼ U2l þ V2m; V2n ¼ �U2mþ V2l, l and m being the directional cosines that can be obtained by
using the R-function o [29]: l ¼ �ðqo=qxÞ; m ¼ �ðqo=qZÞ.

In particular, Eq. (63) takes a simplified expression for clamped edges, as a consequence that the last
integral in Eq. (63) (extended to the boundary qO) vanishes. The Ritz method is used to discrete Eq. (63). In
particular, U2(x, Z) and V2(x, Z), defined in a domain of arbitrary shape, are expanded by using the
R-functions theory. Eqs. (49–53), constructed for U1(x, Z) and V1(x, Z), can now be used to obtain U2(x, Z) and
V2(x, Z).

7. Numerical results

Eigenvalues and eigenvectors of linear vibrations of shallow shells, as well as the functions U2(x, Z), V2(x, Z)
and the coefficients a and b in Eq. (23), have been calculated by using the computer program POLYE–RL [40].
The resulting second-order nonlinear differential Eq. (23) is integrated by using the 5th order Runge–Kutta
method in the commercial computer program MAPLE. All the nonlinear results are obtained for the vibration
mode with one longitudinal half-wave in both x and y directions, briefly indicated as mode (1,1). In the
presentation of numerical results, the sign of the flexural displacement W has been changed in order to have
positive displacements outward the shell and negative displacements inwards, in order to be consistent with
the results in Ref. [34].

7.1. Numerical results for circular cylindrical panels with rectangular base

Numerical results have been obtained for free vibrations of circular cylindrical panels by using the RFM.
Curved panels with rectangular base are initially considered. Numerical results present the backbone curves,
indicating the change in the resonance frequency versus the vibration amplitude; the backbone curves
(amplitude–frequency curves) shown are relative to the maximum vibration amplitude outwards (i.e. on the
side of the panel opposite to the center of curvature; this amplitude is different with respect to vibration
amplitude inwards in negative direction of the z-axis, which is larger in amplitude), measured in radial
direction at the center of the panel. Several types of boundary conditions are considered. The ten dots Gauss
quadrature formula has been used to perform numerical double integrals.

Example 1. A circular cylindrical panel with rectangular base, having the dimension ratios a/b ¼ 1,
h/Rx ¼ 0.001, a/Rx ¼ 0.4 and Poisson ratio m ¼ 0.3 is investigated. Calculations have been performed for
classical simply supported edges. The same panel was previously studied by Leissa and Kadi [12], and Chia
[17].

Fig. 3 shows the comparison of the backbone curve obtained in the present study with those given in
Refs. [12,17], also obtained by using a single dof and the same shell theory neglecting in-plane inertia. The
present results are in reasonable agreement with those in Refs. [12,17] for vibration amplitudes up to three
times the panel thickness, being closer to those in Ref. [12].

In order to verify the accuracy of the method, the natural frequency of the mode (1,1) is given in Table 1.
The convergence of the natural frequency with the number N3 of terms in Eq. (59c) is shown and results are
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Fig. 3. Amplitude–frequency curves for the fundamental mode of panels with square base (b/a ¼ 1, Rx/a ¼ 2.5, h/Rx ¼ 0.001, m ¼ 0.3);

—, RFM; - - - -, backbone curve from Chia [17]; – � – � , backbone curve from Leissa and Kadi [12].

Table 1

Non-dimensional frequency parameter o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 1� m2ð ÞR2

x=E

q
of free vibrations of the panel (a/b ¼ 1, h/Rx ¼ 0.001, a/Rx ¼ 0.4, m ¼ 0.3);

convergence of the present solution (RFM) with the total number of terms in the expansions and reference solution [12]

Ref. [12] RFM: number of terms in the expansions

18 30 45 63 84

0.47555 0.47556 0.47556 0.47555 0.47555 0.47555
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compared to the frequency obtained by Leissa and Kadi [12]. It can be observed in Table 1 that the non-
dimensional frequency parameter computed with 45 terms converges to the value obtained by Leissa and Kadi
[12]. Increasing the number of terms up to 84 does not make any significant change in the results.

A good agreement of the present results, both linear in Table 1 and nonlinear in Fig. 3, with those in
Ref. [12] shows the accuracy of the present approach.

Example 2. A shallow circular cylindrical panel with boundary conditions given by Eqs. (15)–(18), having
dimension ratios b/a ¼ 1, Rx/a ¼ 10, h/a ¼ 0.01, m ¼ 0.3, is considered. Free nonlinear vibrations of the panel,
classical simply supported at four edges, were previously investigated by Kobayashi and Leissa [11]. A very
good agreement of the backbone curves obtained in the present study with the one obtained in Ref. [11] is
shown in Fig. 4 for classical simply supported edges.

Fig. 5 shows the backbones curves of the panel for four different types of boundary conditions; both the
maximum, Fig. 5(a), and the minimum, Fig. 5(b), of the panel response are shown. It is interesting to note that
the backbone curve obtained for in-plane free simply supported panel, Eq. (18), shows always hardening type
nonlinearity; this is similar to the case of clamped panel, Eq. (15). For other types of boundary conditions,
Eqs. (16) and (17), softening type nonlinearity is initially obtained, quickly turning to hardening type. It can be
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Fig. 4. Amplitude–frequency curves for panels of rectangular base (b/a ¼ 1, Rx/a ¼ 10, h/Rx ¼ 0.01, m ¼ 0.3); —, RFM; - - - -, backbone

curve from Kobayashi and Leissa [11].

Fig. 5. Effect of boundary conditions on amplitude–frequency curves for panels of rectangular base (b/a ¼ 1, Rx/a ¼ 10, h/Rx ¼ 0.01,

m ¼ 0.3); —, classical simply supported panel, [11]; - - -, classical simply supported edges, RFM; � � � � � , in-plane immovable simply

supported edges, RFM; – � – � , in-plane free simply supported edges, RFM; – � � – � � , clamped edges, RFM. (a) Maximum of the

coordinate w in a vibration period; (b) minus minimum of coordinate w.
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observed that, excluding the clamped case where the rotational constraints play a fundamental role deforming
the fundamental mode shape and largely increasing its natural frequency, in-plane constraints change the
nonlinearity from hardening (in-plane free edges) to softening (simply supported and in-plane immovable) due
to the increased importance of in-plane stretching with respect to bending.
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Table 2

Natural frequency o0 (Hz) of the panel with rectangular base for different boundary conditions (a ¼ b ¼ 0.1m, Rx ¼ 1m, h ¼ 0.001m,

E ¼ 206� 109 Pa, r ¼ 7800 kg/m3, m ¼ 0.3)

Boundary conditions RFM (Hz) Ref. [34] (Hz)

In-plane free simply supported 535.0 539.4

Classical simply supported 637.0 636.9

In-plane immovable simply supported 911.9 912.0

Clamped 1145.5 1168.3
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Fig. 6. Amplitude of the response of the panel with rectangular base vs. the excitation frequency; —, classical simply supported edges [34];

- - - -, in-plane immovable simply supported edges [34]; – � – � , backbone curves (RFM). (a) Maximum of the coordinate w in a vibration

period; (b) minus minimum of coordinate w.
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Fig. 7. Amplitude of the response of the panel with rectangular base vs. the excitation frequency; —, in-plane free simply supported edges

[34]; - - -, classical simply supported edges [34]; – � – � , backbone curves (RFM). (a) Maximum of the coordinate w in a vibration period;

(b) minus minimum of coordinate w.
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Example 3. Free vibrations of a shallow circular cylindrical panel with different boundary conditions are
considered. The panel has the following dimension and material properties: length between supports
b ¼ 0.1m, curvilinear dimension a ¼ 0.1m, radius of curvature Rx ¼ 1m, thickness h ¼ 0.001m, Young’s



ARTICLE IN PRESS

0.8 1 1.1 1.2

1.1

0

0.5

1

1.5

2

M
a
x
(d

is
p

la
c
e
m

e
n

t/
h

)

M
in

(d
is

p
la

c
e
m

e
n

t/
h

)

0

1

2

3

0.5

1.5

2.5

1.30.9 0.8 1 1.1 1.2

1.1

1.30.9

Fig. 8. Amplitude of the response of the panel with rectangular base vs. the excitation frequency; - - -, classical simply supported edges [34];

—, clamped edges [34]; – � – � , backbone curves (RFM). (a) Maximum of the displacement w at the center of the panel in a vibration
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Fig. 9. Effect of boundary conditions on amplitude–frequency curves for the panel with complex base in Fig. 2; RFM solution;

—, clamped edges; - - -, in-plane immovable simply supported edges; � � � � , classical simply supported panel; – � – � , in-plane free simply

supported edges; – � � – � � , in-plane free simply supported edges with additional distributed elastic tangential spring of stiffness per

unit length kspr ¼ 75*1011N/m2. (a) Maximum of the coordinate w in a vibration period; (b) minus minimum of coordinate w.
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modulus E ¼ 206GPa, mass density r ¼ 7800 kg/m3 and Poisson ratio m ¼ 0.3. The panel with the
same dimension ratios (b/a ¼ 1, Rx/a ¼ 10, h/Rx ¼ 0.01, m ¼ 0.3) was previously studied in Ref. [11] with
classical simply supported edges, and in the present study, Example 2, for four types of boundary conditions
(see Fig. 5). The same panel subjected to forced vibration with non-dimensional harmonic force excitation
f ¼ 0.021 (defined in Ref. [34] and corresponding to 6.6N for simply supported panel) applied at the center of
the panel and damping ratio z ¼ 0.004 has been recently studied by Amabili [34], by using also a model
previously developed in Ref. [21], for different boundary conditions with a different approach and by using up
to 39 dof in the nonlinear models, which are based on Donnell’s nonlinear shell theory retaining in-plane
inertia.
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Fig. 10. Amplitude–frequency curves of the panel with complex shape for various cut depths ratios a1/a, RFM; —, a1/a ¼ 0.7;

- - -, a1/a ¼ 0.8; – � � –, a1/a ¼ 0.9.
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The natural frequency o0 of the fundamental mode of the panel for four different boundary conditions has
been computed by the RFM and compared in Table 2 to results presented by Amabili [34]; a very good
agreement of the results confirms the accuracy of the present approach.

Figs. 6–8 show the maximum (part (a) of the figures) and minimum (part (b) of the figures) of the panel
radial response of the fundamental mode versus the excitation frequency computed by Amabili [34] for each of
the four types of boundary conditions given in Eqs. (15)–(18); results are compared to those obtained by using
the RFM, where only backbone curves have been computed. The present results for free vibration are
extremely close to those of Amabili [34], as shown in Figs. 6–8, for all the considered boundary conditions; this
gives an excellent agreement. In order to perform the comparison, it is necessary to consider that the backbone
curve approximately goes through the middle of the forced response curves for different force levels.

7.2. Numerical results for circular cylindrical panels with complex base

A circular cylindrical panel with complex base, shown in Fig. 2, is investigated. The dimension and material
properties of the panel are assumed to be (see Fig. 2): overall length b ¼ 0.199m, curvilinear width
a ¼ 0.132m, length of the cut b1 ¼ 0.041m, curvilinear width at the cut a1 ¼ 0.092m, radius of curvature
Rx ¼ 2m, thickness h ¼ 0.00028m, Young’s modulus E ¼ 195GPa, mass density r ¼ 7800 kg/m3, Poisson
ratio m ¼ 0.3.

Fig. 9 shows the backbone curve of the panel calculated in the present study by using the RFM for each of
the five types of boundary conditions given in Eqs. (15)–(19); the maximum, Fig. 9(a), and the minimum,
Fig. 9(b), of the response at the center of the panel, in radial direction, are shown. It is interesting to note that,
in the case of in-plane free simply supported edges of the panel, results indicate very weak hardening type
nonlinearity. The backbone curves for the other types of boundary conditions indicate softening type
nonlinearity.

Numerical calculations have been performed for the same panel as the cut depth approaches a1/a-1, i.e.
approaches the limit case of a panel with rectangular base; boundary conditions are in-plane free simply
supported at all the edges. The influence of the cut depth on the nonlinear amplitude–frequency curve of the
panel is shown in Fig. 10. Globally 63 terms have been used in the expansions in order to get the results
presented. This number of terms corresponds to the eleventh power in the polynomials approximating U and
V, and to the tenth power in the polynomial approximating W in Eqs. (59a–c); this number of terms has been
found to give convergence of the linear eigenfunctions and eigenvectors.
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Fig. 11. Experimental set-up. (a) Curved panel with complex base; (b) panel excited by the shaker at ~x ¼ 40mm and ~y ¼ a=2.
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8. Experimental results and comparison

Tests have been conducted on an aluminum circular cylindrical panel with the same geometry (but different
material) used for calculation in Section 7.2: b ¼ 0.199m, a ¼ 0.132m, b1 ¼ 0.041m, a1 ¼ 0.092m, Rx ¼ 2m,
h ¼ 0.00028m, E ¼ 70GPa, r ¼ 2700 kg/m3, m ¼ 0.33. The panel was inserted into a heavy rectangular steel
frame, see Fig. 11, having V-grooves designed to hold the panel and to avoid transverse (radial) displacements
at the edges; silicon was placed into the grooves to fill any gap between the panel and the grooves. In-plane
displacements normal to the edges were allowed on the convex part of the domain because the constraint given
by silicon on these displacements was very small; this may be not true for the concave part of the domain; in-
plane displacements parallel to the edges were elastically constrained by the silicon. Therefore, the
experimental boundary conditions are close to those given for in-plane free, simply supported boundary
conditions with distributed springs parallel to the edges, as expressed by Eq. (19), at least for the convex part
of the panel; for the two concave parts the same boundary conditions are imposed to the model, but the actual
constraints in the tested plate are probably more complex.

The panel has been subjected to: (i) burst-random excitation to identify the natural frequencies and perform
a modal analysis by measuring the panel response on a grid of points, (ii) harmonic excitation, increasing or
decreasing by very small steps the excitation frequency in the spectral neighborhood of the fundamental
natural frequency, to characterize nonlinear responses in presence of large-amplitude vibrations (step-sine
excitation). The excitation has been provided by an electrodynamical exciter (shaker), model B&K 4810.
A piezoelectric miniature force transducer B&K 8203 of the weight of 3.2 g, glued to the panel and connected
to the shaker with a stinger, measured the force transmitted. The panel response has been measured by using a
very accurate laser Doppler vibrometer Polytec (sensor head OFV-505 and controller OFV-5000) in order to
have non-contact measurement without introduction of inertia. The time responses have been measured by
using the Difa Scadas II front-end, connected to a HP c3000 workstation, and the software CADA-X 3.5b of
LMS for signal processing, data analysis, experimental modal analysis and excitation control. The same front-
end has been used to generate the excitation signal. The CADA-X closed-loop control has been used to keep
constant the value of the excitation force for any excitation frequency, during the measurement of the
nonlinear response.

The measured natural frequency of the fundamental mode (1,1), which is the only one investigated in the
present study, is 156Hz. The measured excitation was far from being sinusoidal; as usual, higher harmonics
are introduced by the shaker around resonance for higher excitation levels [41].
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Fig. 12. Experimental oscillatory displacement (1st harmonic) vs. excitation frequency for different excitation levels measured at the center

of the panel; fundamental mode (1,1). —— experimental points;- -, connecting line; -, direction of movement along the line.

(a) Excitation at ~x ¼ 40mm and ~y ¼ a=2; (b) excitation at a different position.
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Fig. 13. Comparison of numerical (for different stiffness values kspr) and experimental amplitude–frequency curves (1st harmonic) of the

panel with complex shape; fundamental mode (1,1). J, Experimental value; – � –, line interpolating the experimental data; - -, simply

supported panel (kspr-N); – � –, kspr ¼ 197� 1011N/m2; ——, kspr ¼ 52.6� 1011N/m2.
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Fig. 12(a) shows the measured forced oscillation (displacement, directly measured by using the Polytec laser
Doppler vibrometer with displacement decoder DD-200 in the OFV-5000 controller; measurement position at
the center of the panel) around the fundamental frequency, i.e. mode (1, 1), vs. the excitation frequency for
three different force levels: 0.05, 0.1, and 0.15N. The excitation point was at ~x ¼ 40mm and ~y ¼ a=2.
Fig. 12(b) shows the measured forced oscillation around the fundamental frequency vs. the excitation
frequency for four different force levels: 0.05, 0.1, 0.15 and 0.2N for a different position of the excitation
point. The closed-loop control used in the experiments keeps constant the amplitude of the harmonic
excitation force, after filtering the signal from the load cell in order to use only the harmonic component with
the given excitation frequency. The measured oscillation reported in Fig. 12 has been filtered in order to
eliminate any frequency except the excitation frequency (1st harmonic of the response). Experiments have
been performed increasing and decreasing the excitation frequency (up and down); the frequency step used in
this case is 0.02Hz, 16 periods have been measured with 128 points per period and 200 periods have been
skipped before data acquisition every time that the frequency is changed. In Fig. 12(a) the hysteresis between
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the two curves (up ¼ increasing frequency; down ¼ decreasing frequency) is clearly visible. Sudden increments
(jumps) of the vibration amplitude are observed when increasing and decreasing the excitation frequency;
these indicate softening-type nonlinearity. However, in Fig. 12(b), it is shown that for larger vibration
amplitude there is a folding, and the nonlinear behavior turns to hardening-type.

By using the forced responses in Figs. 12(a, b), the experimental backbone curve, indicating the
frequency–amplitude relationship in case of free vibrations, is obtained. This curve is plotted in Fig. 13 vs. the
theoretical calculations for aluminum panels with simply supported edges and in-plane free simply supported
edges with additional elastic tangential spring of stiffness kspr. The theoretical first-harmonic component is
plotted, which is approximately the average value between the oscillation amplitude outside and inside the
shell. In particular, the theoretical curve for kspr ¼ 52.6� 1011N/m2 is extremely close to the experimental
results, giving both a qualitative and quantitative validation of the theoretical approach. However, the natural
frequency computed for kspr ¼ 52.6� 1011N/m2 is significantly larger than the measured one (156Hz).
However, for kspr ¼ 0.63� 1011N/m2 a computed natural frequency of 160Hz is obtained, which is extremely
close to the experimental value. The indetermination of the experimental boundary conditions as well as a
significant effect of geometric imperfections on both natural frequency and trend of nonlinearity are the
probable reason for differences between numerical and experimental results; geometric imperfections are not
taken into account in the present study.

9. Conclusions

In the present study, geometrically nonlinear vibrations of circular cylindrical panels with different shape of
the boundary are considered for several boundary conditions. The study of the nonlinear vibrations is based
on the R-functions theory and variational methods, which allow considering complex shape of the panels.

Numerical calculations of nonlinear free vibrations of circular cylindrical shells with rectangular base have
been performed for several sets of boundary conditions. In order to check the accuracy of the present
approach, a comparison with the natural frequencies, backbone curves and forced responses previously
obtained by Amabili [34], Kobayashi and Leissa [11] and Leissa and Kadi [12] has been carried out. Free
vibrations of circular cylindrical panels with complex geometry have been investigated by using the RFM.
Specific laboratory experiments have been conducted on a panel having the same geometry in order to give a
further validation of the numerical results.
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